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1-14 Mutual Coupling between Antennas 
 
The simplest approach for coupling between antennas is to start with a far-field approximation. We can 
modify Eq. (1-8) for path loss and add the phase term for the finite distance to determine the s-parameter 
coupling. 
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Eq. (1-54) includes the polarization efficiency when the transmitted polarization does not match the 
receiving antenna polarization. We have an additional phase term because the signal travels from the 
radiation phase center along equivalent transmission lines to the terminals of each antenna. Equations (1-
52) and (1-54) have the same accuracy except Eq. (1-54) eliminates the need to solve the two-port circuit 
matrix equation for transmission loss. These formulas assume antenna size is insignificant compared to the 
distance between the antennas, and each produces approximately uniform amplitude and phase fields over 
the second element.  
 
When antennas are in the near field of each other, Eq. (1-54) can be modified so that radiation from 
different portions of a large antenna, such as a reflector, are divided into smaller portions that radiate in the 
far-field of the receiving antenna. We modify Eq. (1-54) to a summation. 
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Now the gain Gi and radiated electric field E1i are for a portion of the antenna and the phase and range 
distance are different for each sub-element of the large antenna. The radiation from second antenna is in its 
far-field at the location of each small portion of the first antenna and we use the radiated far-field pattern. 
Instead of using normalized electric fields we can express Eq. (1-54a) in terms of radiated fields (V/m). 

Multiply the near-field electric field by distance r and the conversion factor 4 /( )Pπ η as in Eq. (1-4) to 
convert to the square root of gain.  
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Now the electric fields are near-fields (V/m) radiated at the center of each antenna from the other. If both 
antennas are large, we apply a double summation and use the range difference ri – rj. 
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 We use Eq. (1-54a) for ray tracing methods when multiple rays reach the receiving antenna from multiple 
directions and near field formulations are used for all rays. 
 
An example of using this method is the coupling between two reflector antennas. One reflector feed 
transmits and the other receives. The transmitting feed radiates directly to the receiving feed. The 
transmitting feed radiates and excites currents on both reflectors (a physical optics approach) and can 
include rim PTD currents. The currents excited on both reflectors are subdivided into small patches whose 
radiation is in the far-field of the receiving feed. The radiation from each patch is included in the sum (1-
54a). Additional terms of the currents excited on each reflector by the currents initially excited by the feed 
on the other reflector can be added to small patches in the far field of the receiving feed can also be added. 
If the receiving reflector is not in the main beam of the transmitting reflector, the GTD (geometric theory of 
diffraction) method can be used. GTD requires that we account for blockage of direct radiation while 
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physical optics analysis does not need to account for blockage. We start with direct radiation between the 
two feeds. We add the singly diffracted rim terms from both reflectors for rays directly into the receiving 
feed and include effect of its radiation pattern in the direction of the rim diffracted ray. When we add the 
doubly diffracted rays from the two reflectors, we include the effect of the interaction of the two reflectors 
provided we weight the pattern of the receiving antenna in the direction of the doubly diffracted ray. Eq. (1-
54a) is suitable for both  physical optics and ray tracing methods while the method below requires using 
currents excited on scatterers (physical optics or method of moments). This describes a method where 
radiation terms are added one at a time because it is best to determine the each effect and not include what 
could be insignificant multipath terms (Section 1-17).   
 
We can improve on Eq. (1-54) when we use the current distribution on one of the two antennas and 
calculate the near-field fields radiated by the second antenna at the location of these currents. Since currents 
vary across the receiving antenna, we use vector current densities to include direction: Jr electric and Mr 
magnetic. Although magnetic current densities are fictitious, they simplify the representation of some 
antennas. We compute coupling from reactance, an integral across these currents [see Eq. (2-34)]. 
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The input power to the transmitting antenna Pt produces fields Et and Ht. The power Pr into the receiving 
antenna excites the currents. The scalar product between the incident fields and the currents includes 
polarization efficiency. If we know the currents on the transmitting antennas, we calculate the near-field 
pattern response from them at the location of the receiving antenna. Similar to many integrals, Eq. (1-55) is 
notional because we perform the integral operations only where currents exist. The currents could be on 
wire segments or surfaces. A practical implementation of Eq. (1-55) divides the currents into patches or 
line segments and performs the scalar products between the currents and fields on each patch and sums the 
result. A second form of the reactance [see Eq. (2-35)] involves an integral over a surface surrounding the 
receiving antenna. In this case each antenna radiates its field to this surface, which requires near-field 
pattern calculations for both.  Equation (1-55) requires adding the phase length between the input ports and 
the currents, similar to using Eq. (1-54). When we use Eq. (1-55), we assume that radiation between the 
two antennas excites insignificant additional currents on each other. We improve the answer by using a few 
iterations of physical optics, which finds induced currents from incident fields (Chapter 2). 
 
We improve on Eq. (1-55) by performing a moment method calculation between the two antennas. This 
involves subdividing each antenna into small elements excited with simple assumed current densities. 
Notice the similarity between Eqs. (1-52) and (1-54) and realize Eq. (1-55) is a near-field version of Eq. (1-
54). We use reactance to compute the mutual impedance Z21 between the small elements as well as their 
self impedance. For the moment method we calculate a mutual impedance matrix with a row and column 
for each small current element. We formulate a matrix equation using the mutual impedance matrix and an 
excitation vector to reduce coupling to a circuit problem.  This method includes the additional currents 
excited on each antenna due to the radiation of the other.   
 
 


