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Chapter 13 Antenna Measurements 
 
13.1 Antenna Measurement Equipment 
 
Figure 13-1 illustrates the elements of antenna measurement equipment for an outdoor range. Outdoor ranges are 
built to handle large test antennas and transmit over long distances to reduce quadratic phase error across the 
aperture. The usual practice is to have the signal transmitted from a source antenna and received by the antenna 
under test (AUT). Although by reciprocity, the antenna range could be operated with the transmitter connected to the 
AUT and the receiver to the source antenna and it would produce the same patterns. The source antenna with a 
narrow beam is placed on a high tower to reduce the signal that bounces off soil from significantly affecting the 
signal strength and phase across the receiving aperture. Section 13-2 discusses the elevated range signal distribution 
across the AUT. A positioner on the source tower controls the polarization, but the differing soil reflections (Section 
1-18) may necessitate separate calibrations of the horizontal and vertical polarizations. As shown in Figure 13-1, the 
AUT is mounted on a heavy azimuth over elevation positioner with boresight of the AUT orthogonal to the azimuth 
axis. The positioning of the AUT can be described as rotations about axes in space as the product of rotation 
matrices (Section 3-13). If we designate the z-axis as the AUT boresight direction between the source and the test 
positioner, the x-axis as the normal to the page of Figure 13-1, and the y-axis as vertical, then the positioner 
operating is explained as first a rotation about the x-axis (elevation) followed by a rotation about the new y-axis 
(azimuth) with z-axis rotation as AUT polarization. 

 
Figure 13.1 Outdoor antenna range equipment 
 
Figure 13-2 shows the heavy positioners: azmiuth-over-elevation and elevation-over-azimuth. The elevation-over-
azimuth position can be analyzed as two rotations. The elevation axis rides on top of the azimuth table and changes 
direction as azimuth moves. Again, if we mount the z-axis of the antenna orthogonal to azimuth axis so it points 
parallel to the ground, the lower rotation is about the y-axis that rotates the x-axis of the elevation axis. The second 
upper rotation is about the new x-axis. We calculate the pointing directions by using rotation matrices (Section 3-
13). 
 
Each axis of the positioner has either a synchro package or optical encoder to report on the angle. The positioner 
controller uses this information to set its angle. A synchro is a rotating transformer. The usual three-phase synchro is 
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made with three windings in the stator with their axes separated by 120º. The rotator contains a single winding. 
When current flows through the rotator (400 Hz), it induces voltages in the three windings proportional to the angle 
of the rotator winding with respect to the stator winding axes. In a manual system these three voltages are applied to 
the three stator windings of a follower synchro whose rotator is not driven but connected to the dial of a rotating 
pointer and rotates to the same angular position. The single synchro gives limited resolution. A polar plotter uses 
another follower synchro to drive its table while the radial arm is driven by the receiver output. To improve 
resolution a second synchro is added to the package and connected to the shaft by 36:1 gearing to produce a 
complete synchro rotation for every 10º. Rotating indicators are built to follow both synchro outputs. It appears that 
the two dials have been geared in the same 36:1 ratio but they are just independent dials. Both the angle indicators 
and the polar plotting tables contain friction clutches to allow manual setting of zero. Manual rectangular plotter also 
uses the synchro voltages to drive a follower synchro whose rotation drives the shaft that moves the paper linearly 
through properly sized gearing. 

 
Figure 13-2 Heavy positioners: (a) azimuth-over-elevation, (b) elevation-over-azimuth 
 
Manual pattern plotting can only operate on one frequency at a time. The receiver and synthesized transmitter can be 
phased locked to differ in frequency by the IF to allow measurement of multiple frequencies while as the positioner 
axis is rotating. This produces a more interesting control problem. First, sampling of the two synchro outputs 
produces a digitized output that can be fed into a controller. We can either measure the multiple frequencies while 
the positioner is moving or stop the positioner at each measurement angle and step through the frequency list. The 
second step mode produces more accurate positioning, but increases the run-time as the positioner must overcome 
inertia after each step. To prevent overshoot of the step angle, the positioner controller should slow the rate of 
rotation as the stop angle is approached. Adding a tachometer to the axis adds another state variable to the control 
system and reduces overshoot that can cause the angular cycling around the commanded angle. In the continuous 
measurement mode of operating the angle where measurement happens at each frequency is spread over a range of 
angles. Ideally, for a given frequency each measurement will be at the same offset from the triggering angle for the 
first frequency. Tachometer feedback improves the controller’s ability to maintain a constant rotation rate because 
the rotating axis may have binding in the shaft or unbalancing the antenna from the axis may cause uneven rotating 
rates. The digitized output of the angular position is stored along with measurement of each frequency and the 
fluctuations of angle can be corrected, if necessary. Digitizing the output of a single synchro produces a resolution 
of 0.01º, a dual synchro a resolution of 0.001º, and an optical encoder a resolution of 0.0001º. Figure 13-1 contains a 
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power unit to provide the power necessary to drive the positioner motors while the controller operates independent 
of motor size. 
 
The receiver uses two channels to allow measurement of phase as well as amplitude. We add the second channel to 
phase lock the receiver to a fixed level signal that has traveled an independent path. Figure 13-1 shows a reference 
channel horn placed off to the side of the rotating antenna that both phase-locks the receiver and provides the 
channel for a relative phase measurement. This reference channel samples the incident wave front. The synthesized 
transmitter generator returns to same frequency within the resolution of the digital phase-locked loop, but not the 
same phase. The difference between the two channel paths determines the phase difference measured. If the cables 
that carry the signal or local oscillator are not stable, phase will drift with time and cause measurement error. For 
this reason we mount the mixer and local oscillator generator close to the receiving antennas and carry the IF over 
the longer cables. As receiver and synthesizer technology improves, the number of frequencies that can be measured 
increases. We either become overwhelmed with data or we can use signal processing by converting to the time-
domain to remove unwanted range reflections in a software gate through windowing the time response. Of course, 
all these measurements must be stored in computer memory while the computer provides executive control of the 
transmitter, receiver, and positioner controller.  
 
13-2 Elevated Outdoor Range 
 
Reflection of the signal from the soil in an outdoor range produces measurement error. When we raise the source 
antenna and AUT, we reduce these errors. Figure 13-3 illustrates the geometry of the elevated range. 
 

 
Figure 13-3 Elevated outdoor antenna range 
 
The recommended parameters of the elevated range are: R = 2D2/λ, source height ht = receive height hr, receive 
height hr = 4D. The minimum range distance corresponds to the quadratic phase factor s = 0.062, which generates 
about 0.1 dB loss for a uniform distribution (Tables 4-42 or 4-43) with a smaller effect for tapered distributions. 
Figure 4-33 illustrates that this quadratic phase error across the aperture reduces the first null depth and raises the 
measured first sidelobe of distributions for low sidelobes. The second pattern sidelobe and null show little error. We 
need to be concerned about the pattern level of the source antenna directed toward the reflection region. Figure 13-4 
shows the amplitude ripple in the aperture plane of a 60-foot antenna elevated range when measuring at 1.9-GHz 
using a 90º beamwidth source antenna (for example,a microstrip patch or dipole over a finite ground plane). The 
difference between reflection of horizontal and vertical polarizations [Figure 1-9] from soil produces significantly 
different responses. The horizontal polarization has amplitude ripple of at least 10 dB, which corresponds to an 
interfering signal 5.6 dB below the direct path signal [Scale 1-8]. The reflection from soil is less for vertical 
polarization and the 3.4 dB ripple corresponds to an interfering signal 14 dB below the direct. The amplitude ripple 
means there is an associated phase ripple as well. Vertical polarization has a maximum phase error of 11º [Scale 1-9] 
while horizontal polarization phase error is 27.7º. These errors are unacceptable. Figure 13-4 illustrates that the 
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phase of the vertical and horizontal reflections are 180º out of phase because the peaks and nulls are offset for the 
two polarizations. 

 
Figure 13-4 Aperture plane fields using a 90º beamwidth source on 60-foot elevated range with source at 15-foot 
height (a) solid – horizontal polarization, (b) dashed – vertical polarization 
 
Using a higher gain source antenna reduces the ground reflection of the elevated range and reduces aperture ripple. 
Figure 13-5 shows how replacing the low gain source antenna with a standard gain horn with 17 dB gain reduces the 
interfering signal. The interfering signal is 17 dB to 23 dB below the direct for horizontal polarization and about -25 
dB for vertical polarization. These errors may be acceptable for some applications. 
 

 
Figure 13-5 60-foot elevated antenna range over soil at 1.9-GHz using a standard gain antenna as source (a) solid – 
horizontal polarization, (b) dashed – vertical polarization 
 
An aperture antenna integrates the aperture ripple and produces a lower ripple when an aperture antenna samples the 
aperture. Figure 13-6 plots the aperture field for a 6-foot diameter reflector measured on a 600-foot antenna range at 
4 GHz. The plot shows nearly equal ripple for horizontal and vertical polarization because the reflection approaches 
grazing angles less than the Brewster angle where both polarizations have the same phase and similar amplitude. 
The nearly 2-dB ripple means the interfering signal is quite significant  (-19 dB). Figure 13-7 illustrates amplitude 
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ripple along the distance axis. Instead of reducing monotonically, the down range pattern ripples. Both the vertical 
and down range ripple rates are larger than a wavelength. 

  
Figure 13-6 Aperture field in the vertical plane of an elevated range at 4 GHz for range 600 feet and a height of 24 
feet. (a) solid – horizontal polarization, (b) dashed – vertical polarization 
 

 
Figure 13-7 Down-range ripple on elevated antenna range at 4 GHz and 24-foot height 
 
We can elevate the range further than the 4D suggested antenna height to reduce ground reflection. Figure 13-8 
gives the aperture plane when the transmitting and receiving antennas are raised to 40 feet. This height produces a 
smooth wide maximum at a 40-foot height. The figures of this section show it is important to access aperture ripple 
in an outdoor elevated range before blindly measuring on one of these facilities. 
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Figure 13-8 Aperture distribution integrated by 6-foot aperture on a 600-foot range with source and receiving 
antennas elevated 40 feet at 4 GHz. 
 
We can reduce the effect of the soil reflection by adding diffraction fences to the range to redirect the reflections 
away from the AUT. Figure 13-9 shows the plan view of an outdoor range with a series of five diffraction fences. 

Figure 
13-9 Diffraction fences on elevated range 
We can reduce the knife-edge diffraction from the top of the fences by serrating them as shown in Figure 13-10. To 
fully assess the effectiveness of the fences it would be best to probe the aperture fields. 



Chapter 13 Antenna Measurements 

Modern Antenna Design, 3rd edition, by Thomas Milligan, © 2014 
 

 
Figure 13-10 Serrated top diffraction fence 
 
13-3 Ground Reflection Outdoor Range 
 
The ground reflection range uses the soil reflection to smooth the aperture distribution at the AUT by phasing it to 
add with the direct signal. We lower the source antenna to height determined by the range length, wavelength, and 
AUT antenna height. The source antenna height is approximately λR/(4hr). For a relative smooth flat ground plane, 
we located the receive antenna height hr > 3.3D for 0.25 dB vertical ripple. Figure 13-11 gives the elevation view of 
the range. 

 
Figure 13-11 Ground reflection outdoor range. 
 
Figure 13-12 plots the vertical probe pattern of a 600-foot ground plane range operating at 4 GHz and shows the 
smooth distribution instead of the rapid ripple of the elevated range. The 0.25-dB ripple ranges from 16- to 25-ft for 
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horizontal polarization and from 15- to 24-ft for vertical polarization. The flat-top of the two curves differ by 1-ft 
and average at 20-ft. The second thing to notice about this plot is the difference between the horizontal and vertical 
polarizations. Separate calibrations using a gain standard are necessary for the two polarizations to remove this 
difference from the measurements. At 5-GHz, the proper source height reduces to 1.44-ft. Figure 13-13 gives the 
frequency response of the range for a fixed source height and shows the variation in the vertical probe amplitude for 
3-, 4-, and 5-GHz. This figure illustrates the necessity of varying the source height after changing frequency. A 
tapered anechoic chamber is modeled after the ground reflection range and its response is sensitive also to the 
distance of the source from the walls in the narrow tapered source end. 
 

 
Figure 13-12 Vertical probe on 600-ft ground reflection range @ 4 GHz with 1.8-ft source height 
(a) Solid – Horizontal Polarization, (b) Dashed – Vertical Polarization 
 

 
Figure 13-13 Vertical probe on 600-ft ground reflection range with 1.8-ft source height: 3-GHz – red, 4-GHz – 
black, 5-GHz – blue.  (a) Solid – Horizontal Polarization, (b) Dashed – Vertical Polarization 
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13-4 Indoor Antenna Ranges (Anechoic Chambers) 
 

 
Figure 13-14 Instrumentation of indoor antenna range. 
 
Figure 13-14 illustrates the arrangement of equipment used in an indoor antenna range. The anechoic chamber is 
lined with absorber to prevent wall reflections from reaching a quiet zone centered on the receiving antenna located 
at one end. We use thick absorber where a wave can reflect into the quiet zone with a single bounce and thinner 
absorber where it takes multiple bounces. Chambers are designed using ray tracing and knowledge of the reflection 
characteristics of the absorber. The chamber size and absorber thickness determine the lowest operating frequency, 
whereas the fineness of the absorber points determines the highest operating frequency. The absorber is carbon-
loaded polyurethane foam treated with fire-retardant chemicals, which can be leached out by water (ceiling leaks). 
The absorber should be self-extinguishing when the source of flames is removed. The source antenna is centered 
vertically along the chamber axis (not as shown) on positioner that rotates the polarization of the antenna. The usual 
positioner in a chamber is a model tower, which moves the antenna directly in the spherical coordinate system and 
allows axial movement to center the antenna over the azimuth axis when mounted on the rotating head. The RF 
equipment uses a synthesized transmitter and a tracking receiver to allow measurement of multiple frequencies in 
the same manner as outdoor ranges. Figure 13-14 connects the reference channel mixer directly to a coupled signal 
from the transmitter. 
 
A rectangular chamber is similar to an elevated outdoor range where the source and receiving antenna are located 
the same distance from the walls. The rectangular chamber uses thick absorber on the sidewalls and back-wall for 
single bounce reflections. The tapered chamber purposely uses wall reflections near the source to smooth the field in 
the quiet zone in the same manner as the ground reflection range. Figure 13-15 gives the field ripples in the quiet 
zone of the two chambers. The tapered chamber uses thin absorber in the chamber throat to allow reflections at low 
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frequencies, whereas the back-wall has full-sized absorber to prevent reflections at the lowest frequency of 
operation.  

 
Figure 13-15a Rectangular Chamber with RCS Target 
 

 
Figure 13-15b Tapered Chamber 
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Figure 13-15c Reflections and quiet-zone field variations in (a) rectangular and (b) tapered chambers 
 
Because the tapered chamber is a ground reflection range that relies on wall reflections, its quiet-zone fields are 
sensitive to the source location and beamwidth. A series of experiments need to be performed to find the proper 
location for the source antenna for each frequency band. To properly illuminate the walls, the source antenna 
directivity should be no more than 15 dB. We probe the fields in the quiet zone to determine its ripple. Figure 13-16 
shows the effect of source location using a geometric optics ray analysis of a tapered chamber.  

 
Figure 13-16 Tapered chamber model quiet-zone fields with various source locations measured from the chamber 
vertex 
 
Figure 13-17 shows a field probe where a receiving antenna (a log periodic dipole antenna as pictured) is moved 
along a horizontal track to measure the quiet-zone ripple. Of course, the field probe will cause some chamber 
reflections as the track interacts with the receiving antenna. Another type of field probe places the probe antenna on 
a vertical dielectric rod and the moving track is placed on the floor of the chamber to reduce chamber reflections due 
to the probe itself. Each probe contains a synchro package to report on its location and allow plotting or digital 
recording versus position. 
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Figure 13-16 Field probe  
 

 
Scale 13-1 Amplitude ripple due to multipath 
 
Chambers are specified to have limited reflections into the quiet-zone because these cause measurement errors from 
multipath. A usual specification is -40 dB or less. Scale 13-1 is an expanded Scale 1-8, whereas Scale 13-2 is an 
expanded Scale 1-9. Figure 13-17 illustrates the geometry of the free-space VSWR measurement of a chamber. The 
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moving probe allows the recording of the standing wave in the chamber due to addition of the multipath signal to the 
direct signal. Rotating the probe antenna reduces the direct signal relative to the wall reflection and increases the 
ripple by the probe pattern to allow measurement. 
 

 
Scale 13-2 Peak phase error due to multipath 

 
Figure 13-17 Free-space VSWR measurement of chamber reflections 
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13-4.1 Additional Loss when Measuring Aperture in the Near-field 
 
Assume an antenna under test (AUT) is far enough from the chamber walls that the wall reflections can be ignored. 
Define a near-field scaling factor, k, so the measurement distance = 2*D**2*k/wavelength. The approximate 
quadratic phase factor of the measurement is S = 1/(16*k). Compute the aperture diameter or width in wavelengths: 
DW=D/wavelength, the equivalent k factor used below can be increased by the factor: Sqrt(1 + (1/(4*k*DW))**2) 
for more accurate results, but for most apertures this factor is nearly one. 

 
Scale 13-3 Quadratic Phase Error for Paraboloidal Reflector Measured in Near-field 

 
Scale 13-4 Quadratic Phase Error Loss of Uniform Linear Distribution 
 
Much smaller k than given on the scale soon produce a pattern dip on axis and should not be used with a uniform 
distribution.  

 
Scale 13-5 Quadratic Phase Error Loss of 30 dB Sidelobe Linear Distribution 
 
A rectangular aperture antenna with near field ratios k(e) and k(h) in the principal planes would have a total 
measurement loss given by the sum of the values for each plane given by the scales above.  
 
Additional loss occurs due to the extra taper loss across the aperture, but it is small and can be ignored in most cases. 
The pattern of the chamber feed horn increases the amplitude taper across the antenna depending on its beamwidth. 
The pattern angle of the feed is related to the near field ratio k and the aperture width in wavelengths DW 
Feed Angle = acos(1/sqrt(1+ 1/(2*k*DW)**2) 
There is additional taper loss due to the path distance to the edge relative to the aperture center:  
taper (dB) = 10*Log(1+1/(2*k*DW)**2) 
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We sum the tapers due to the feed pattern and path length ratio and consider the amplitude taper losses to the AUT. 
For a paraboloidal reflector the taper loss is given by the scale. 

 
Scale 13-6 Additional Amplitude Taper Loss of Paraboloidal Reflector 
 
 
 A linear antenna’s taper can be approximated by a cosine squared on a pedestal distribution where the 30 dB 
sidelobe antenna has a 13 dB taper. Use the scale below and subtract the loss for a 13 dB taper from the total loss 
now across the antenna due to the taper for a low sidelobe antenna while a nearly uniform distribution uses the scale 
without adjustment. Of course, the near-field measurement eliminates pattern nulls and raises sidelobe levels. 

 
Scale 13-7 Additional Amplitude Taper Loss of Linear Cosine2 + Pedestal Distribution 
 
 
13-5 Model tower positioner and phase center measurement 
 
The model tower positioner has a horizontal track at its base that allows movement of a horizontally-mounted 
rotating head positioner that is mounted on a long dielectric tube to place the head in the center of the chamber 
vertically. The drive motor, synchro package and possibly a tachometer are located in the base with a dielectric 
drive-shaft located in the center of the dielectric support tube of the positioner. The dielectric tube reduces 
reflections at low frequencies, but at higher frequencies it is necessary to wrap the support in absorber when the 
dielectric tube becomes a significant scattering object. Rotation of upper axis moves the antenna about the Φ 
coordinate of spherical coordinates. When we mount the model tower on an azimuth table, its rotation moves the 
antenna pointing by the θ spherical coordinate.  
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Figure 13-18 Model tower positioner (a) on azimuth positioner, (b) on azimuth-over-elevation  
 
13-5.1 Phase center measurement 
 
The model tower positioner allows the measurement of antenna phase center because its position can be moved until 
it rotates about the vertical azimuth axis where phase change is minimum. We need to position the phase center at 
the focus of a paraboloidal reflector to minimize phase error loss. We use [(Eq. 8-7)], the phase error loss of a 
paraboloidal reflector, as our measure of phase center where we move the antenna until this integral is a minimum. 
Given an antenna measurement table, we adjust the phase by applying [(Eq. 3-1)] for movement to a new position r 
= (x, y, z) using the wave number k = 2π/λ(sin θcos φ, sin θsin φ, cosθ) with all measurements multiplied by ejk·r. We 
rotate the polarization head of the positioner to zero and 90º to obtain the phase center location in the x and y planes 
(and axes).  
 
Figure 13-19 shows an antenna mounted on the polarization head axis of a model tower positioner. Although phase 
center is a general term for the location of the point of minimum phase movement over a range of angles, we divide 
this into a z-axis term called phase center, and the location off-axis called lateral offset. The feed to produce a beam 
peak on boresight of a reflector will have a significant pattern level on boresight (θ = 0). We need to apply different 
techniques than given here for patterns with nulls on boresight such as mode 2 spirals. We measure the pattern phase 
at equal off-boresight angles relative to the phase at boresight, Ph1 at θ and Ph2 at –θ and compute the phase center 
and lateral offset. 

 1 2( )Phase Center 
720(1 cos )

Ph Ph λ
θ

+
=

−
 (13-1) 

 1 2( )Lateral Offset 
720sin

Ph Ph λ
θ

−
=  (13-2) 

Equations (13-1) and (13-2) use phases in degrees. These assume the measurements were taken by manual control of 
the positioner with the phases read from a meter and inserted in the equations. Proper measurements do not use 
negative values of θ but are limited to the range 0º to 180º, but these equations assume negative values were used. 
For a linearly polarized antenna such as a horn or dipole, the antenna is not turned over from positive θ to negative θ 
and the direction of the θ polarization vector does not change from positive to negative. A mode ±1 spiral has a 
phase rotation of 180º from φ rotation of 180º, but when we use a negative θ we did not turn over the antenna and 
phase remains unchanged. When we collect measurements on an automatic system that stores data as θ and φ 
polarization components and adds 180º to the phase of these components if negative θ (or 180º to 360º) are 
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measured, we need to use Huygens source polarization [(Eq. 1-37)] for linear polarization or remove the phase 
rotation of circular polarization before applying Eq. 13-1 or Eq. 13-2. Similarly, if we use the position of the antenna 
that gives the minimum phase error loss for a given reflector f/D, we need to convert to these polarizations and 
remove phase rotation with φ given the circular mode number before applying Eq. (8-7). 
 
  

 
Figure 13-19 Antenna mounted on model tower positioner and phase center location relative positioner axes 
 
In a manual measurement we move the antenna along the z-axis travel of the model tower positioner until its phase 
center is aligned with the table (azimuth) axis. For the position shown in Figure 13-19 (phase center behind the table 
axis), the sum of phases [Eq. (13-1)] is positive. We measure phase and calculate the lateral offset in the φ = 0 plane 
(x-axis) and φ = 90º plane (y-axis) to determine the separate components. If the positive axis direction is up as 
shown in Figure 13-19, the phase increases from the –θ position to the θ position for the lateral offset shown. 
Remember the positioner axis rotates CW for positive rotation, which is a CCW rotation along the antenna 
coordinate system (positive). A feed antenna may exhibit spherical aberration, which means it does not have a 
unique phase center but its location depends on the angles off boresight. We determine this movement by computing 
phase center at a number of pairs of θ positions using Eq. (13-1). When we use small values of θ, the denominator 
terms of Eqs. (13-1) and (13-2) multiply the errors of the phase measurements and reduce accuracy. The antenna 
may also exhibit astigmatism (Section 8-5) where the phase center location depends on φ. A mode 1 antenna has its 
extrema in orthogonal planes that usually occur in the E- and H-planes. We apply Eq. (13-1) in a number of planes 
defined by φ to determine astigmatism. 
 
We need to detect whether phase has gone through multiple cycles, which it will for large values of phase center and 
lateral offset by adding phase change between measurements at small positioner steps. If we know before hand that 
the antenna is located significantly off the center of rotation, we should remove the phase change due to movement 
before calculation and then add it to the final result. We encounter this problem when we measure antennas on 
mockups where the antenna is also located off axis when we want to interpolate data to in-between angles and the 
antenna moves multiple cycles between measurement points. We remove the phase due to movement from the 
measurement, interpolate the data at new angles, and afterward add back the phase due to position. 
 
We cannot apply Eq. 13-1 if the antenna has a pattern null at boresight because phase is ill-defined at this null. The 
solution is to find similar formulas using only measurements on one side of θ. We use measurements at an inner 
angle θ1, an outer angle θ2 (e.g. reflector half-subtended angle [Eq. (8-2)], and at an angle between (e.g. θc = (θ1 + 
θ2)/2).  
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We average the phase center and lateral offset over all measured φ angles to serve as an initial guess for an 
optimization routine using phase error loss for a given reflector f/D as the cost function to determine a unique phase 
center. To use the simple cost function for a mode 1 feed [Eq. (8-7)], we remove the higher order mode phasing due 
to φ rotation before applying the equation. This operation enables an optimization search to determine phase center. 
However, the phase error loss found by this operation is not the correct when the actual beam-peak occurs off-
boresight in the reflector pattern. Amplitude taper loss and spillover loss are unaffected by this operation and are 
correct. We must do a full pattern analysis including the reflector using physical optics to determine actual gain. For 
a mode 1 circularly polarized feed we remove the phasing due to φ rotation by projecting the measurements on a 
unit circularly polarized vector similar to the projection on to Huygens polarization for a linear antenna. Projection 
involves taking the scalar (dot) product with the complex conjugate (Section 1-11).  The feed antenna could have a 
ring focus for use with reflectors with the vertex expanded into a ring similar to the displaced axis dual reflector 
(Section 8-16) and we use Eq. (13-3) in various φ planes to determine this lateral offset in all planes (ring focus). 
 
13-5.2 Alignment of model tower 
 
After moving the horizontal travel of the positioner until the table axis is aligned with phase center, we must 
determine its location on the antenna. A transit theodolite placed off to the side can be used to determine the location 
of the center of rotation about the table axis on the antenna. A second method is to mount a laser with its beam 
aligned with the table axis and the laser spot on the antenna shows the center of rotation and phase center.  
 
A model tower uses a dielectric column and its mounting to the table can be misaligned and produce significant 
measurement error. Figure 13-20 show two types of misalignments that can be detected by electrical measurements. 
The horizontal axis of the polarization head should intersect the vertical table axis. A positioner whose axes do not 
intersect has lateral offset and our measurement of antennas will always exhibit lateral offset. Of course, the lateral 
offset of the antenna will add or subtract from this lateral offset depending the relative φ angle of measurement. We 
measure lateral offset, rotate φ 180º and repeat the lateral offset measurement. The antenna lateral-offset shifts sides 
and sign while the positioner offset remains constant. We add the two measurements and divide by 2 to find 
positioner offset. We can correct the positioner lateral offset by shimming the tower at its mounting point. The 
dielectric tower mount seldom has alignment pins and the tower can rotate slightly in the bolt clearance holes. 
Figure 13-20(b) illustrates an exaggeration of this effect. The table travel axis does not align with the polarization 
head axis. Our measurement of lateral offset changes when we move the model tower travel. By repeating the lateral 
offset measurement at different travel positions, we detect this problem. We may have to rely on mechanical 
alignment measurement techniques to align the positioner. 
 
One effect is distortion of the dielectric tower due to the weight of the antenna. The weight may bend the tower 
forward so that the polarization head is no longer orthogonal to the table axis. Unless the tower has an elevation 
axis, the antenna boresight cannot be pointed along the source axis and we measure boresight along a ring. A second 
problem with a heavy antenna is that some model towers are made in a helix. The weight causes rotation in the helix 
because the tower is weak at the joint where one turn of the helix joins the next turn. Reflection of a laser beam to 
the back wall from a mirror mounted on the front surface readily shows both types of flexure.  
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Figure 13-20 Misalignments of model tower positioner 
 
13-6 Gain Measurement 
 
We compare the powers received by an antenna with a known gain to that of the antenna under test (AUT) to 
determine gain. Given a source gain gs, and wavelength λ, the ratio of received power to transmitted power is  
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 (13-4) 

for the AUT and gain standard (ST). We compare the output powers and cancel like terms. 
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 (13-5) 

Most of the time we want the two distances to be the same because range reflections can alter the 1/R2 transmission 
characteristic from the free space path loss formula. Converted to decibels Eq. (13-5) becomes 
 ( ), , 10 log / 20log( / )AUT dB ST dB AUT ST AUT STG G P P R R= + +  (13-6) 
We calibrate an automated measurement by adding an operation where we measure the gain standard and the 
program adjusts all measurements in the file to be gain. 
 
Example An antenna’s gain is measured with respect to a standard gain horn with 16 dB gain as -5 dB. The distance 
from the source antenna to the AUT is 33.5 ft., whereas the distance to the gain standard is 31.1 ft. The gain of the 
AUT is GAUT,dB = 16 – 5 +20 log(33.5/31.1) = 11.65 dB 
 
Cable Connected to Antenna Gain Ripple due to Cable Mismatch 
 
When a cable is connected to an antenna and the gain is measured, it will show a ripple in the frequency domain due 
to the cable connector mismatch. The mismatch of the cable connected to the antenna cannot be separated from the 
antenna by looking at the time domain. The ripple in the response is due to the reflected power loss of the 
combination mismatch.  
We determine the length of the cable by noting the frequency separation of the nulls. The reflection of the 
antenna/cable connector either adds or subtracts from the second cable connector mismatch. Because this is a 
reflection we note that the response repeats on a Smith chart at half wavelength intervals. Given the frequency 
separation Fs the cable length is a half wavelength at this frequency.  

 
2 S r

cLength
F ε

=  

Example The frequency difference between nulls is 100 MHz for a Teflon filled (dielectric constant = 2.1) cable. 
When we insert these values in the equation above, the length equals 40.7 inches. 
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The maximum VSWR given the two mismatches of the cable connector and antenna/cable connector combination is 
the product of two VSWR’s and the minimum VSWR is the ratio.i We compute the VSWR from the return loss by 
first computing the voltage reflection coefficient. 

 Re /20 110       VSWR
1

turnLoss ρρ
ρ

− +
= =

−
 

The product and ratio of the two mismatches separated in distance VSWR’s are given by VX (maximum) and VN 
(minimum). We compute the reflected power loss for each case by 

 
2 1 ( ) 10 1   where 

1
VSWRPower Loss dB Log
VSWR

ρ ρ − = − =  +
 

The frequency response ripple is the difference of these two Power Losses for maximum and minimum VSWR. 
The amount of ripple due to a cable connector mismatch depends on the antenna/cable connector combined return 
loss. The scales below show the ripple due to cable connector mismatch for fixed values of the antenna/cable 
connector mismatch. Generally, the antenna mismatch dominates the combination of cable mismatch and antenna. 

 

 

 

 
If we assume each cable connector has the same mismatch, we find the individual connector mismatch from cable 
measurement. The cable measurement with have a similar frequency ripple response as above and we use the 
minimum return loss to determine the return loss of the individual connector mismatches. 
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The ripple due to the connector mismatch can be removed in the time domain using a filtering window provided a 
sufficient frequency range is available to resolve the far connector on the cable. After being converted back to the 
frequency domain, the response ripple will be removed. 

 
1 George L. Ragan, ed., Microwave Transmission Circuits, McGraw-Hill, 1948, p. 554 
 
 
Circularly Polarized Antenna Gain Measurement using Linear Polarization  
 
One method of measuring a circular polarized antenna is to use a linear source antenna.  By measuring the gain 
relative to a linear polarized gain standard and noting the axial ratio by rotating the source, the gain correction is 
given by the scale below.  For example, an antenna with a 3 dB axial has a circular gain 1.64 dB above the measured 
value as a linear antenna at the peak of the CP response.  The scale below is the gain correction factor given by Eq. 
(1-47). 
 
The other method is to measure the Theta and Phi (co-pol. and cross-pol. Huygens source) components which have 
been calibrated to linear gain standards and compute the circular components (see section 1-11.1). 
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Scale 13-8 Gain Correction Factor of CP antenna Measurements using Linearly Polarized Standards 
 
 
13-6.1 Two identical antenna gain standard measurement 
 
We use path loss to determine the value of a gain standard. Two mechanically identical antennas can be used to find 
gain. First measure the return loss of the two antennas to verify that they are identical. We rearrange [Eq. (1-9)] 
using the same gain for the transmitting and receiving antennas.  
 ( )20log( )  ( ) / 2ST UG K fR path loss dB= + −  (13-7) 
The constant KU depends on the range units [see Eq. (1-9)] for frequency f in MHz. In Eq. (13-7) path loss is a 
positive number. These measurements will not work on a ground plane range or in a tapered chamber because the 
significant level of reflections change the effective gain of the source antenna. We have the same problem with the 
three antenna measurement.  
 
At low frequencies we must measure the antennas on an elevated range. The ground reflection either adds or 
subtracts from the direct signal. Figure 13-7 shows the expected path loss ripple versus downrange for a particular 
range. The peak-to-peak range is about 70 ft. for a wavelength of 1/3 ft. We need to move the antennas closer 
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together to decrease the range difference from peak-to-peak, but still be in the far field of the antennas. By making 
measurements at many distances, we can average out the downrange ripple due to ground reflection. We call this an 
extrapolation measurement. The extrapolation technique allows near field measurements because the gain curve can 
be extrapolated to the correct value when the data is fit to an equation. It will be necessary to analyze the downrange 
ripple response on the range to determine how many measurements will be needed over what distance. 
 
13-6.2 Three antenna gain standard measurement 
 
We can use any three antennas that operate at the same frequency and make path loss measurements between them 
and to eliminate the requirement for identical antennas to calibrate gain standards. One antenna is used to transmit 
only, one receiving only, and one both transmitting and receiving. If we move one antenna from the receiving end to 
the transmitting end of a tapered chamber, its gain changes due to wall reflections and this is why we cannot 
calibrate gain standards in a tapered chamber (or on a ground plane range). We measure the transmission loss three 
times: S21 antenna 1 to antenna 2, S31 antenna 1 to antenna 3, and S32 using a network analyzer calibrated for 
transmission loss. We calculate a gain factor GF = KU + 20 log(fR) and separate the three transmission 
measurements into the gain of each antenna. 

 
1, 21, 31, 32,

2, 21, 31, 32,

3, 21, 31, 32,

( ) / 2
( ) / 2
( ) / 2

dB dB dB dB

dB dB dB dB

dB dB dB dB

G S S S GF
G S S S GF
G S S S GF

= + − +

= − + +

= − + + +

 (13-8) 

 
13-6.3 Three antenna gain-polarization standard measurement 
 
Equation (13-8) assumes that the three antennas have insignificant cross polarization and their polarizations were 
rotated to the peak response. That is, probably linearly polarized horns. We need six measurements to separate the 
two polarization components of the three antennas. We measure first with the antennas co-polarized and then rotate 
the receive antenna by 90º CCW and repeat the measurement. The R antenna is receiving only, T transmitting only, 
and S transmitting and receiving with horizontal (co-pol) response RX and vertical (cross-pol) response RY, and so 
on. The six voltage measurements (complex) are designated: 
 DRT – direct transmitting only to receiving only – both horizontally polarized 
 PRT – transmitting only to receiving only with receiving rotated 90º CCW 
 DRS – direct transmitting/receiving to receiving only – both horizontally polarized 
 PRS – transmitting/receiving to receiving only with receiving rotated 90º CCW 
 DST – direct transmitting only to transmitting/receiving – both horizontally polarized 
 PST – transmitting only to transmitting/receiving with transmitting/receiving rotated 90º CCW 
 
These measurements work on both linearly and elliptically polarized antennas. We convert these measurements into 
pseudo left- and right-hand components. 
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( ) / 2  and  ( ) / 2
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 (13-9) 

We compute the receiving only antenna components. 
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 (13-10) 

We use similar expressions for the transmitting/receiving antenna components. 
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The transmitting only antenna has the conversion expressions. 
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We convert these components to decibels and add the factor GF/2 to find the gain (dB). We use the voltage 
components to compute the right- and left-hand polarization components [Eq. (1-39)] and the tilt of the polarization 
ellipse. 
 
13-7 Efficiency of small antennas 
 
We compute efficiency of moderate sized antennas by comparing gain and directivity. If we measure the antenna at 
a discrete set of angles that covers the radiation sphere, both gain and directivity have the same error when the peak 
response is missed. The integral of the pattern over the radiation sphere has a second-order error if the peak of the 
beam is missed. These operations find efficiency with a second-order error. 
 
Small antennas have wide and ill-defined patterns that radiate in all directions. It is difficult to mount the antenna 
without seriously affecting its pattern. We circumvent these problems by measuring the antenna in a confined cavity 
or space to determine its losses or Q. The small antenna has a narrow bandwidth, which allows the use of the cavity. 
The Wheeler cap measurement uses reflection measurements using a network analyzer to determine losses. We must 
mount the antenna on a ground plane to restrict its pattern. The ground plane does not affect its efficiency, but it will 
change its impedance match. Many small antennas are operated when mounted on a ground plane. Second place a 
metal cap over the antenna and re-measure the input impedance match. This metal cap should be at least 1/6 λ away 
from the antenna. This metal cap eliminates radiation and we measure the material losses. 
 
We need to know the circuit model of the antenna near resonance because it affects the calculation of efficiency.  
 Model 1, resistances: reflections on constant resistance circles on Smith chart – series circuit 

 rad

L rad

R
R R

η =
+

 (13-13a) 

 Model 2, conductances: reflections on constant conductance circles on Smith chart – shunt circuit 

 rad

L rad

G
G G

η =
+

 (13-13b) 

 Model 3, reflections on constant radius on Smith chart 
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S S

S
η

−
=

−
 (13-13c) 

We need to observe the impedance frequency response on the Smith chart to determine which version of Eq. (13-13) 
we use to compute efficiency. Some cases fail to follow any of the circuit models and the efficiencies, calculated by 
the three methods, are slightly different. 
 
Figure 13-21 illustrates using waveguide techniques to measure efficiency of a small antenna independent of a 
circuit model. We need to build a waveguide whose cut-off frequency is below the operating frequency of the 
antenna.  
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Figure 13-21 Rectangular waveguide efficiency measurements of antenna 
 
Method 1: Reflection measurements only 

1) Measure the antenna reflection in free space S11,FS 
2) Place antenna in rectangular waveguide and use it to feed the waveguide with a load on the end, Figure 

13-21a. Adjust the back-wall until S11,FS ≈ S11,WG 
3) Replace the waveguide load with a short and measure S11,WGS for various positions of front short and 

compute efficiency 

 11, 11, 11, 11,WGS WG WGS WGMAX MIN
S S S Sη = − −  (13-14) 

Method 2: Transmission test measurement, Figure 13-21c 
1) Install identical antennas under test in waveguide operating above cut-off 
2) Move sliding shorts to give physical symmetry in waveguide 
3) Measure S11,WGT, S21,WGT, and S22,WGT. Verify S11,WGT = S22,WGT for symmetry and compute  
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 (13-15) 

 
13-8 Time-domain methods in antenna measurements 
 
We operate receivers and network analyzers in the stepped-frequency mode and measure antennas over a large 
frequency range easily. We transform these measurements by using the fast Fourier transform (FFT) or chirp-Z 
transform into the time (distance) domain either internally in the analyzer or externally from a table of 
measurements to determine antenna range multipath problems. By applying a software time (distance) gate to the 
data, we eliminate multipath reflections on the antenna range and reduce measurement errors. The transform of a 
stepped frequency response is a Fourier series expansion that has multiple repeating responses. The time between 
repeating responses (alias free range) is related to the frequency step Δf,  

 
1alias free time (nsec.) 

( )f GHz
=
∆

 (13-16) 



Chapter 13 Antenna Measurements 

Modern Antenna Design, 3rd edition, by Thomas Milligan, © 2014 
 

Given the speed of light, 1-ft/nsec (0.3m/nsec), we compute the alias free range. 

 

1alias free range (ft) 
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0.3alias free range (m) 
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f GHz
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=
∆

=
∆

 (13-17) 

Example Determine frequency step to allow detection of multiple reflection at 30m. To allow clear resolution at 
30m, we use a frequency step to give about 75m of alias free range or 37.5m on both sides of t = 0. By using Eq. 
(13-17), Δf = 0.3/75 = 0.004 GHz = 4 MHz. 
 
The total frequency range determines the resolution, where two signals appear separated, of the multipath on the 
range. ΔT = 1/(frequency range) or ΔT(nsec) = 1/[frequency range (GHz)]. The distance resolution is  

 

1Distance (ft) =
Frequency range (GHz)

0.3Distance (m) =
Frequency range (GHz)

∆

∆
 (13-18) 

Example To determine the multipath location within 10 cm, we need measurements over the frequency range = 
0.3/0.1 = 3 GHz. If we combine this with the example above that has 75m alias free range, we need to measure 751 
frequencies. A measurement with only 101 frequencies over 400 MHz could resolve distance only to 75 cm. 
 
For a reflection measurement the signal travels twice the distance and the alias free range Eq. (13-17) is half and the 
resolution is also half. We use these measurements to locate problems in a cabling system. We can convert the time-
domain impulse response to a step response by integrating the impulse response. When we measure within a cable, 
we convert the integrated time impulse response and convert the reflection coefficient to resistance. Reactance has 
no meaning in the time-domain. This is the time-domain reflectometer (TDR) response used to measure resistance 
changes in a transmission line.  
 
If there is a ripple in the frequency domain, it is due to two signals separated by a distance. For a transmission 
measurements the distance is equal to the wavelength of the delta frequency, while a reflection measurement is half 
that value. The ripple in patterns is covered in Section 3.1a. 
 
13-8.1 Distance to fault tests 
 
The cables on an antenna range or a cell-site base station can be tested using a stepped frequency reflection 
measurement. The tests are called frequency domain reflectometry and can be performed using a small portable 
instrument. The instrument measures S11 over a stepped frequency range, zero pads the measurement to 2N points, 
and uses the FFT to convert to time (distance) domain. When the range cables or base station is completed and 
checked out, the instrument separates the reflection at each junction to show they are properly connected. For the 
base station the transmitting antennas are checked for excessive impedance mismatch in the as-mounted 
configuration including cable interaction. Periodically, the base station is measured to see if any changes are 
occurring. These measurements can be automated and performed on a schedule to detect problems and order repairs. 
 
A reflection measurement travels twice the distance of a transmission measurement on an antenna range. Given the 
dielectric constant of the cable εr and the velocity of light c, we determine the frequency step  
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The total frequency range of measurements determines the resolution 
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Example Cable run of 100-ft with dielectric εr = 2.1, we use Eq. (13-19) to compute the frequency step required: Δf 
= 109/(4√(2.1)100) = 1.725 MHz. We use Eq. (13-20) to determine the step frequency range given the desired 
distance resolution. Assuming an airline: 24 in. needs 246 MHz bandwidth; 12 in., 492 MHz; 6 in., 984 MHz, 3 in., 
1967 MHz; 1 in., 5.9 GHz, and so on. 
 
To determine the reflection at a given point on the cable, we increase S11 by twice the loss to that position because 
the instrument computes the cable length and we enter the loss per length. 
 
13-8.2 Time-gated measurements 
 
We reduce multipath by time-gating the measurement by either using a hardware or software gate. The AUT and 
source antennas need to have sufficient bandwidth to allow radiation of the whole frequency range or an equivalent 
bandwidth given the pulse width of the hardware gate. We could use the fast Fourier transform (FFT) or chirp-Z 
transformer on the frequency response and gate the response in software. First we need to center the response on the 
propagation time through the chamber to the AUT by adding a phase slope (group delay) to the measurements. 
Given the difference between the range and reference channel distances d and the frequency f, we add phase to each 
measurement to remove the group delay negative slope. Phase = 360ºd(f)/c before calculating the transform and zero 
will be centered at d. The distance of the multipath relative to the direct signal determines the alias free range and 
the required measurement Δf by using Eq. (13-17). 

 
# of Frequencies - 1alias free time (nsec.) 

bandwidth( )GHz
=  (13-21) 

We form a window on the response around t = 0 (distance = 0) to remove the multipath signals and compute the 
inverse transform to calculate the antenna response free of multipath. If necessary, we add the antenna range 
distance group delay phase shift to the data: Phase = -360ºd(f)/c to return it to its original phase slope.  
 
If we use a uniform amplitude window on the distance data, we introduce Gibbs ripple to the transformed frequency 
response data. A uniform amplitude window has the -13.2 dB sidelobes and equivalent pass band ripple that alters 
the data. We need a tapered filter window to reduce these effects. We could use a Chebyshev or sampled Taylor 
distribution digital filter to reduce the Gibbs ripple. The network analyzer with the software gate option uses an 
elliptic (Cauer) filter that has small ripples in the pass band and a rapid fall-off in the filter skirts to uniform 
amplitude sidelobes. To reduce the Gibbs ripple, the filter tapers the time responses outside the gate over the whole 
FFT range. Both the network analyzer receiver and commercial measurement software use the same filters. Table 
13-1 lists the filter types and their characteristic given the measurement bandwidth, BW (GHz). 
 
Table 13-1 Characteristics of software gate digital filters with measurement bandwidth, BW (GHz). 

Gate 
Shape 

Minimum Gate Width 
(-6 dB Points) 

0 to -6 dB 
Rise/Fall 

Time 

0 dB to Stopband 
Rise/Fall Time 

Passband 
Ripple dB 

Maximum Stopband 
Sidelobe Level dB 

Minimum 1.2/BW 0.6/BW 1.2/BW ±0.40 -24 
Normal 2.8/BW 1.4/BW 2.8/BW ±0.04 -45 
Wide 8.0/BW 4.0/BW 8.0/BW ±0.02 -52 
Maximum 22.4/BW 2.8/BW 22.4/BW ±0.01 -80 
 
The distance to the source of multipath determines which filter is required. If we need to use the Minimum filter 
because the multipath distance is close, we introduce conversion errors. It may be better to increase the 
measurements bandwidth provided the antenna VSWR is stable over this frequency range. It is important that the 
sum of the phase center movement versus frequency of both the transmitting and receiving antenna combined with 
antenna movement during the test does not move the antenna outside the hardware or software gate. Second, it is 
assumed that the antennas will have reasonable responses across the frequency range. When the data is transformed 
back to the frequency range, the data near the band edges will be altered by these operations and become inaccurate. 
We need to measure across a larger bandwidth so that the center portion will still be accurate. We need to eliminate 
a percentage of the frequency sweep on both edges, Table 13-2 as inaccurate. Although the Minimum gate has the 
smallest frequency region of inaccurate conversion on both sides of the gated band, the errors have been spread 
throughout the band. 
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Table 13-2 Frequency data to avoid on each edge after gating 
Gate 

Shape 
Percentage of frequency sweep 

To avoid on each edge 
Minimum 1% 
Normal 5% 
Wide 10% 

Maximum 20% 
 
The software gate has the advantage of being applied after measurement and can be adjusted, whereas measurements 
with the hardware gate applied cannot be altered in post-processing. 
 
 
13-9 Compact Range 
 
The compact range uses a paraboloidal reflector to transform a incident spherical wave into a plane wave 
(collimated) beam that illuminates the AUT as shown in Figure 13-22. An offset fed reflector eliminates feed 
blockage, but this introduces cross-polarization and amplitude taper vertically across the AUT. The use of a large 
f/D ≈ 1, reduces the cross-polarization and edge taper [Eq. (8-3)] to less than 0.55 dB [Scale 8-2]. Scattering from 
the feed antenna and the rim of the reflector introduce additional cross-polarization and ripple. 

 
Figure 13-22 Compact range uses paraboloidal reflector to collimate beam 
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Figure 13-23 Instrumentation of compact range 
 
 
To achieve a flat amplitude across the quiet zone, a wide beamwith feed is used. Given the diameter of the quiet 
zone, D and the reflector focal length f, we find the beamwidth from [Eq. (8-2)] ≈ (57.2 – 0.0044ψf

2)º/(f/D) where ψf 
is the feed pointing in degrees [1]. Figure 13-23 shows serrations on the main reflector that reduce the scattering 
from the rim by scattering it in all directions. A second approach uses a rolled edge, Figure 13-24, to reduce rim 
diffraction. Both methods work when the length of the serrations is at least 4λ. It is claimed that the rolled edge 
works better at low frequencies. Offset feeding the reflector introduces cross polarization given approximately as 
[1], 

 
sin

20log    dB
4 /

f

f D
ψ 

 
 

 (13-22) 

which ranges from -25 to -30 dB.  

 
Figure 13-24 Rolled edge to reduce rim scatter from compact range reflector.  
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The aperture of the main reflector has both amplitude and phase ripples across the AUT. Not only is the edge 
treatment important but the surface RMS. For example, a 0.01λ RMS produces ±0.25 dB ripple [3] and because the 
wave travels across the deviations twice, the phase RMS is 7.2º. We use a Gaussian distribution for this phase 
deviation. Systematic deviations across the main reflector lead to large phase variations [3]. Hand rework of the 
reflector was required to randomize the variations and reduce the phase variation. Edge diffraction is an interfering 
signal that produces a sinusoidal variation across the aperture in both amplitude and phase. Fortunately, we measure 
large apertures that integrate the aperture distribution and average out its variation. The AUT is in the near field of 
the main reflector and we must calculate coupling between the two antennas [Eq. (1-55) using fields and currents or 
Eq. (8-29) between radiated fields] to analyze these cases. When we measure gain using substitution, the standard 
gain averages the fields over a smaller aperture that leads to measurement error. Wide beam small antennas integrate 
less of the aperture fields. If it is mounted offset on a larger ground plane, it acts as a field probe measuring the 
aperture field variations. Higher gain antennas have lower measurement errors on a compact range. 
 
Two types of dual reflector antennas are used to reduce cross polarization by tilting the feed and subreflector axis by 
the Mizugutch angle (Section 8-17). One method uses an offset Gregorian arrangement where the subreflector and 
feed are located below the chamber floor in a separate room. The signal propagates through a slot to the main 
reflector. The slot blocks the direct feed illumination of the test article and the edge diffraction of the subreflector. 
Of course, the size of the slot limits the low frequency because waves diffract from its edges that increases as we 
lower the frequency. The second dual reflector compact range uses a Dragonian dual-reflector (Figure 8-22) 
(Section 8-18). Direct feed illumination is a problem because the test article is located in the front hemisphere of the 
feed beam. Baffles covered with absorber or hardware gating prevents this illumination. The long effective focal-
lengths of either dual-reflector antenna reduce the edge taper of the single reflector range. The Gregorian dual-
reflector has been built with rolled edges on both reflectors. The Dragonian dual-reflector system utilizes serrations. 
Straight serrations reduce the cross polarization to about -40 dB with a ±0.5 dB aperture ripple and ±5º phase ripple. 
By curving the edges [2] the cross polarization can be reduces to less than -43 dB and the aperture ripple reduced to 
±0.3 dB with ±2º phase ripple. 
 
The instrumentation on this range is arranged similar to normal anechoic chambers. The source antenna is shown 
with a multiplexer to feed two orthogonal polarizations. Similarly, a multiplexer is placed on the receiving antenna 
to allow sequenced measurements of multiple ports on the AUT. The usual setup locates the reference channel mixer 
on a coupler connected directly to the transmitter cable at the source antenna. In this setup only the AUT positioner 
is moved during measurement, but a second positioner is often used on the source mount to rotate its polarization. 
We cover the source tower and parts of the positioner with absorber to reduce multipath. Figure 13-23 shows the 
AUT positioner mounted on rails to allow movement in the chamber to allow movement to the best the quiet zone 
across the antenna given frequency.  
 
[1] Boumans, Marcel, Influence of range geometry and feed characteristics on compact range system level 
performance, AMTA 2000. 
[2] Hartmann, Jürgen and Dietmar Fasold, Advanced Serration Design for Compact Ranges with UTD, AMTA, 
2000. 
[3] Griffin, W. R., Jr., and Roger Silz, Non-random reflector surface effects on compact range performance, AMTA, 
2000. 
 
13-10 Planar Near-field 
 
Section 12-9 showed how planar near-field measurements can be used to find feeding errors in a planar array. This 
involved a holographic technique where the phase of the far-field pattern was adjusted to account for the probe 
distance during measurement. The probe pattern is convolved with the near-field distribution as it moves across the 
face. Because we have a planar surface, the near-field distribution includes the Huygens source pattern of an 
aperture. We use the inverse fast Fourier transform (FFT-1) to find the far-field pattern where the result is the 
product of the aperture pattern and the probe antenna. When inverse transformed from the far-field, after the pattern 
of the probe and the Huygens source are removed, back to the near-field, the actual distribution across the array 
elements is found. As pointed out in Section 12-9, we can repeat this at many planes and find the distribution along 
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the surface of a paraboloidal reflector or other non-planar surface. Generally, planar near-field measurements are 
restricted to antennas with high gain and narrow beamwidths. 

 
Figure 13-25 Planar near-field measurement  
 
Figure 13-25 illustrates the measurement configuration of a planar near-field. We locate the probe a distance a at 
least 3λ above the reflector rim or planar array surface to prevent collection of excessive near fields of the elements. 
To accurately measure the pattern to an angle θc off broadside, we extend the measurement line L. 

 1tan   or  2 tan
2c c

L D L D a
a

θ θ− − = = +  
 (13-23) 

In Section 13-8 we applied the FFT to time (distance) and frequency measurements. For apertures we use the 
Fourier transform between distribution and pattern measured in sin θ space or kx and ky space (Section 2-2, Huygens 
source approximation). We calculate the range of kx-space from the aperture sampling spacing d [Eq. (12-37)]. 

 maxsin
2d
λθ = ±  (12-37) 

Equation (12-37) says that the minimum collection spacing is λ/2 because sampling at a closer spacing gives θmax in 
invisible space.  



Chapter 13 Antenna Measurements 

Modern Antenna Design, 3rd edition, by Thomas Milligan, © 2014 
 

 



Chapter 13 Antenna Measurements 

Modern Antenna Design, 3rd edition, by Thomas Milligan, © 2014 
 

 
Figure 13-26 Near field sampling at λ/2 increments and corresponding FFT transformed pattern. 
 
Figure 13-26 illustrates the steps in a near-field sampling when the FFT is applied using only 32 sampling points. 
The discrete Fourier transform (DFT) must be arranged from zero to maximum positive point and then most 
negative to least negative point. The DFT, calculated using the FFT, is a periodic function similar to the Fourier 
series used with an array. The FFT has the same number of points as the near-field and does not produce the smooth 
pattern as shown in Figure 13-26(b) but only values at the dotted vertical lines. We calculate the spacing in kx from 
the total span of the near-field sampling. Since the FFT requires 2N samples,  

 
2 2x Nk

d
λ

∆ =  (13-38) 

We decrease the pattern spacing by zero padding the near-field sampling before the FFT. We can see that the space 
between the two portions of the repeating aperture distributions already has many points with low values. We can 
add more points and stretch the distance between the positive and negative apertures and reduce the sin θ 
increments. Of course, this increases the FFT calculation time and produces many unnecessary wide angle pattern 
points. We will apply a technique to resolve the pattern that uses the FFT to interpolate points without increasing the 
size of the FFT but eliminates wide angles. 
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Figure 13-27 Near field sampling at λ increments and corresponding FFT transformed pattern. 
 
Figure 13-27 illustrates a measurement using a λ near-field spacing and the corresponding pattern that now repeats 
at 30º. This measurement has 32 points in the transform and has greater resolution in the far-field pattern. Similar to 
Figure 13-26, the smooth pattern curve was found by interpolation between actual transformed points. Figure 13-28 
shows what happens when we sample at λ/4 near-field spacing. The FFT produces pattern points in invisible space, 
that is, beyond 90º. We fail to gain pattern information although we have better knowledge of the aperture 
distribution. This illustrates that we could zero pad the far-field kx-space in Figure 13-26 and transform back to the 
near-field and interpolate points in the aperture plane. This operation increases the size of the transform that requires 
a longer calculation time and larger storage.  
 
13-10.1 Sampling Errors in Near-field Measurements 
 
Planar near-field is a windowing function on the aperture whose filtering action produces Gibbs ripple in the pattern 
calculated from the transform. Figure 13-29 shows the DFT of a 51 element array sampled in the near field and then 
transformed to the far field (red). The blue curve shows the aperture pattern. The sampling is equivalent to DFT in 
the use of the Fourier series on the array. All distributions with a stepped edge transition exhibit the same error near 
the crossover point in k-space and the sampled pattern is higher than the aperture pattern. When the aperture 
distribution approaches the edge in a linear function with a zero on the edge, the sampled pattern is less than the 
aperture pattern. These errors depend only on the edge condition and not the general aperture distribution. The 
uniform distribution has the same errors near the crossover as the Taylor distribution. This characteristic limits the 
range of valid patterns in a near field measurement dependent on the aperture edge condition. 
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Figure 13-28 Near field sampling at λ/4 increments and corresponding FFT transformed pattern. 
 

 
Figure 13-29 Sampling pattern error due to DFT on 51 element array (a) aperture (blue), (b) array (red) 
 
Figure 13-30 gives the sampling error scales for the edge conditions: (a) uniform step, (b) linear slope, and (c) 
quadratic slope (derivative is zero at edge), as a function of the k-space value at crossover. We use these to 
determine the measurement error off broadside in a planar near-field measurement. 
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Figure 13-30 Sampling error approaching crossover point in k-space pattern dependent on aperture edge condition 
 
Newell [1] calls for increased aperture sampling to limit planar near-field sampling errors.  

 1
max

max

sin 1   or  
1 sin

d
d
λ λθ

θ
−  = − =  + 

 (13-39) 

Example Compute the sampling spacing for crossover at 30º and evaluate errors at maximum angle. Normal 
sampling spacing is λ from Eq. (12-37). When we apply the right equation of Eq. (13-39), we calculate d  = λ/(1 + 
sin(30º)) = 2λ/3. This new spacing increases the k-space crossover point [Eq. (12-37)] kmax = ¾ that corresponds to a 
crossover angle of 48.59º. We compute the normalized k-space k/kmax = 2/3 and read the errors from the scales in 
Figure 13-30. For an aperture with step on the edge the maximum error is 1.65 dB, that is, the level measured would 
be higher than actual. The measurement would be low by 2.7 dB for an aperture with a linear slope to zero on the 
edge. 
[1] A. C. Newell, Error analysis techniques for planar near-field measurements, IEEE Transactions on Antennas and 
Propagation, vol. AP-36, no. 6, June 1988, pp. 754-768. 
 
Because we locate the probe at least 3λ above the aperture or array and the measurement includes convolution with 
the probe pattern, the window edge has a greater fall-off. This tapers the window caused by sampling and reduces 
error to sampling spacing with its edge step.  
 
13-10.2 FFT Resolve or Interpolating of Planar Near-field 
 
We can zero-pad the FFT sampling to increase the number of pattern points calculated from a planar near-field. This 
increases the size of the FFT and greatly increases storage requirements when computing a 2-dimensional FFT. The 
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2-dimensional FFT computes the transform along all rows and then along all columns to find the planar k-space 
pattern. These steps produce many pattern points of little interest and greatly increase the computation burden. We 
can resolve to more pattern points near broadside by removing points in the FFT pattern and perform two additional 
shorter FFT operations to find these pattern points. 

 
Figure 13-31 Step 1 in FFT resolve of linear aperture pattern 
 
Figure 13-31 illustrates the first step of the pattern resolve. We perform the FFT to calculate the pattern from the 
aperture sampling and remove inner samples centered at 90º. To double the number of points, we remove half the 
points. We increase the number of pattern points by four by removing ¾ of the points.  

  
Figure 13-32 Steps 2 and 3 in FFT resolve of linear aperture pattern 
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Figure 13-32 shows the second step of the FFT resolve. The two sections with their center elements removed are 
pushed together and joined to generate a reduced length FFT sampling. When we transform this to the aperture plane 
(Step 3), the sampling spacing is increased.  

 
Figure 13-33 Steps 4 and 5 in FFT resolve of linear aperture pattern 
 
In steps 4 and 5 of the FFT resolve (Figure 13-33), the new aperture plane is zero padded to increase the number of 
points to the original FFT sampling number. Step 5 uses the FFT to find additional pattern points near broadside. 
The initial sampling allows calculation of the pattern over the entire desired region determined by the near-field 
sample spacing. The FFT resolve interpolates the pattern to increase the number of points centered on pattern 
directions of interest. The FFT algorithm has interpolated the pattern without requiring a large storage and 
associated increased computation cost. 
 

 
Figure 13-34 Aperture plane sampling of 64 element array with a probe 3λ above array whose amplitudes were 
found by sampling 30 dB Taylor distribution. 
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The advantages of the FFT resolve can be shown in an example. Figure 13-34 gives the amplitude distribution found 
by sampling at 64 element array with λ/2 spacing with a probe located 3λ above its elements. We reduce the 
coupling between the near-fields of the elements by spacing the probe away from the elements. The near-fields 
attenuate as 1/R2 and 1/R3 from the elements to the probe leaving only the far-field terms significant.  The Taylor 
distribution has a step function at its edge. Figure 13-34 shows a tapered edge distribution. The movement of the 
probe produces a convolution between the probe and the array elements that causes this distribution spread. We 
transform the aperture distribution to the far-field using the FFT and obtain Figure 13-35. This plot has poor 
resolution near boresight and does not show the sidelobe details. Figure 13-36 is the fourfold FFT resolve of the 
pattern plot (Figure 13-35) and now clearly shows the inner sidelobe detail.  
 

 
Figure 13-35 Far-field pattern response obtained by the FFT of the aperture distribution of Figure 13-34. 

 
Figure 13-36 Fourfold FFT resolve of the pattern plot of Figure 13-35 
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13-11 Spherical Near-field range 
 
One this range we measure the pattern over a portion of a sphere and expand the measurements in a series of 
spherical modes. We use this expansion to compute the pattern at any other radius including the far-field. By 
limiting the number of terms in the expansion, we attenuate antenna range reflections and eliminate multipath. A 
general spherical measurement on a model tower can be reduced to a series of spherical modes and used into 
interpolate the pattern and eliminate multipath as well as account for near-field characteristics of the feed for general 
scattering problems, for example, a paraboloidal reflector. Besides using a model tower positioner to collect data on 
a sphere where the source antenna (or probe) is moved close to the positioner, an arch positioner (Figure 13-37) is 
used for spherical near-field measurements. The arch needs to be covered with absorber to reduce the multipath at 
nearly the same radius as the probe. These reflections cannot be removed by limiting the number of modes. 

 
Figure 13-37 Arch positioner combined with azimuth table for spherical near-field measurements 
 
Given the radius of the measurement sphere r0, the number of modes in the expansion N is given by [1] 

 0
2int[ ] 10  where N kr k π
λ

= + =  (13-40) 

Positioning errors have significant effect on the mode coefficients and must be controlled better than typical model 
tower.  
[1] J. E. Hansen, ed., Spherical Near-field Antenna Measurements, Peter Peregrinus, London, 1988, p. 21. 
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Outdoor Spherical Arch Positioner 
 
13.12 Measuring Antenna using RCS 
 
Small broad-beam antennas present a particular difficult measurement problem. It is difficult to mount them on a 
model tower positioner and not have the polarization positioner add a ground plane. Some of these antennas lack a 
proper balun and currents on the feed cable to the receiver radiate. We reduce the cable radiation by covering the 
cable with ferrite beads that have limited effectiveness. Another solution is to receive the signal with a battery 
operated receiver and re-radiate the received signal at a different frequency or at IR. Without a reference signal, we 
cannot measure phase. 
 
If a radar cross section (RCS) range is available, we can measure the pattern from two RCS measurements. We 
divide the RCS into two parts: (1) antenna mode where the signal power appears at the input that can be absorbed or 
reflected to be re-radiated and (2) the structure mode where the antenna reflects signals independent of the input 
load. By using two measurements with different input terminations, we can subtract the structure mode RCS and 
convert the remaining term to antenna gain. Antennas such as dipoles have the same current distribution whether 
terminated with a matched load or a short circuit. If we place an open circuit termination on a dipole, if becomes two 
half length shorted dipole antennas, which has a different current distribution. Slot antennas have just the opposite 
current distributions and we need to use a matched load and open circuit termination. 
 
RCS ranges have unique measurement problems. When we transmit a signal into an anechoic chamber, the return 
signal is large compared to the object reflected signal. We use hardware or software gate centered on the object to 
eliminate these reflections. We start with a background measurement that we will subtract from the measured object 
reflections that enables measurement at a series of frequencies to allow a software gate. In a earlier method of 
measuring RCS, a portion of the transmitted CW signal was added to the receive signal and its amplitude and phase 
was adjusted to null out the received background signal. This tedious process was eliminated by signal processing 
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on digitized signals. The stability of the generator was eliminated by using synthesized sources, but the stability of 
the chamber remains a problem. As the external and internal temperature of the walls change, the walls will move 
slightly and raise the background reflection remaining after subtraction of measurements. One solution is place the 
chamber inside a building so that the double wall construction reduces the effects of outside weather. Nevertheless, a 
background can be held only for a short time. 
 
We mount the antenna on a foam- or shaped-column for measurement. Before the measurement, we measure the 
empty chamber and column to find the background reflection. To calibrate the returned signals, we mount a sphere 
on the column whose RCS can be calculated for a given frequency. We mount the object on the column and 
calculate its RCS from a third measurement. 

 
Object - BackgroundRCS (voltage) RCS (sphere)

Calibration Sphere - Background
=  (13-41) 

We measure the antenna twice: (1) matched termination on antenna terminals, (2) short circuited termination on the 
antenna. We calculate the pattern gain through subtraction of the structure mode RCS. 

 [ ]4( ) RCS (loaded) - RCS(shorted)Gain voltage π
λ

=  (13-42) 

 
 
13-14 G/T Measurement 
 
G/T depends on antenna pointing, frequency, and the receiver noise temperature (Section 1-10). 
We measure G/T using a Y-factor measurement where we compare the noise power out of the 
receiver when the antenna is pointed toward a hot source to when it is pointed at a cold source. 
Because we merely add the sky temperature to cascaded antenna losses noise temperature plus 
receiver noise temperature, we easily separate the system noise temperature. Y-factor is the 
measured ratio of noise power, Y = Phot/Pcold. If the hot measurement would saturate the receiver, 
we place a precision attenuator after the LNA so varying it has little effect on the receiver noise 
temperature and measure Y by subtracting attenuator settings. A spectrum analyzer and other 
receivers do not measure power accurately [1] so the precision attenuator is used to measure the 
difference between the hot and cold measurements. The system noise temperature is computed 
from the noise temperatures. 

 
1

hot cold
e

T YTT
Y
−

=
−

 (13-43) 

The measurements can be performed outdoors with the antenna pointed toward the sky for the 
cold measurement where it is either performed at night or the antenna main beam and major 
sidelobes avoid sun. We use Figure 1-8 to determine the sky temperature. We cover the antenna 
with an absorber lined box for the hot measurement. For a wide beamwidth antenna we cover the 
whole antenna and the ground plane, whereas we cover only the feed for a reflector antenna. The 
hot temperature is the physical temperature of the absorber. Indoor measurements have been 
tried using absorber soaked in liquid nitrogen for the cold measurement, but this measurement is 
stable for only 10 to 20 seconds. We point the antenna into the chamber for the hot measurement. 
Of course, the gain is measured separately. 
 
We can use the solar flux to measure narrow beamwidth antennas to measure G/T directly. We 
point the antenna away from the sun for the cold measurement and point the main beam at the 
sun for the hot measurement. It may be necessary to add the precision attenuator after the LNA 
to prevent receiver saturation when pointing at the sun. With Y = Psun/Psky, we calculate the 
system G/T. 
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( )

2

1 8
G/T 

Y kL
F

π
λ

−
=  (13-44) 

k = 1.38 x 10-23 joule/K (Boltzman’s constant) 
F – solar flux @ f0 w/m2/Hz 
L – beamwidth correction factor = 1 for beamwidth larger than 2º 

 

2

1 0.38 s

a

wL
w

 
= +  

 
 

ws – diameter of the radio sun in degrees @ f0: 0.5º for f0 > 3000 MHz, 0.6º for 1420 MHz, and 
0.7º for 400 MHz 
wa – antenna 3-dB beamwidth  
 
The solar flux, F, is available online @ 245, 410, 610, 1415, 2695, 4995, 8800, and 15400 MHz. 
The values reported must be multiplied by 10-22. We interpolate F for frequencies between these. 
 
An artificial radio star can be used to measure G/T inside a chamber [2]. A noise generator is 
connected to an amplifier and a transmit antenna inside the chamber. The cold measurement is 
the absorber. A standard gain horn is attached to an amplifier with a measured noise temperature 
to serve as a G/T standard. We determine the G/T of the unknown antenna and receiver by 
performing Y-factor measurements on both antennas. 

 
( )( )1 1 2

2 2
1

/ 1
/

1
G T Y

G T
Y

−
=

−
 (13-45) 

We can extend Eq. (13-45) to any Y-factor measurement of G/T when we have established a G/T 
standard. 
 
Let us extend our discussion to relate the chamber measurements to the final system. We 
generate the artificial radio star by connecting an excess noise source to the transmit antenna. 
The amount of noise which reaches our antenna under test is found from path loss 
considerations. In normal antenna measurements we eliminate the need to know exact path loss 
by using a gain standard. The antenna and its network, which could include a beamformer and 
amplifiers, are connected to a receiver. We divide the receive system into three components: a 
lossless antenna (directivity), the combination of antenna losses and feed network, and the 
measurement receiver. To represent the excess noise present at the antenna, we use a hot source 
temperature THS which when multiplied by the directivity gives us the additional noise at the 
antenna terminals. The antenna receives the noise due to the chamber walls Tc whether the 
excess noise source is on or off. Our lossless antenna has a gain Ga and is connected to a network 
with gain Gn and noise temperature Tn where the noise contributions of the antenna (ohmic 
losses and mismatch) are included in the network. Let us refer the noise temperature to the input 
of the receiver with noise temperature Tmr by multiplying the noise power by the various stages. 

 
( )
( )

Cold c n n n mr

Hot HS a n c n n n mr

P kB T G T G T

P kB T G G T G T G T

= + +

= + + +
 

The noise received by the antenna from the chamber walls is independent of the antenna gain 
since it is the integral of gain angular distribution times a constant temperature Tc. The integral 
of the gain function over all space is one. 
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We use the receiver to measure the ratio of the two powers Y. 

 

( )
( )

/
/

HS a n c n n n mrHot

Cold c n n n mr

HS a c n mr n

c n mr n

kB T G G T G T G TPY
P kB T G T G T
T G T T T GY

T T T G

+ + +
= =

+ +

+ + +
=

+ +

 

We see from the equation above that when we measure a device with significant gain, we can 
ignore the noise temperature of the receiver. 

 

/
/

1

Hot n mr n

Cold n mr n

Hot Cold mr
n

n

T T T GY
T T T G
T YT TT

Y G

+ +
=

+ +
−

= −
−

 (13-46) 

Equation (13-46) is the normal Y factor measurement equation for a device when the noise 
temperature of the receiver is included [1].  
 
When measuring the antenna, we compute the network and antenna losses combination noise 
temperature from the following equation. 

 
(1 )

( 1)
HS a c mr

n
n

T G T Y TT
Y G
+ −

= −
−

 (13-47) 

We measure with a gain standard to determine THS. Given the directivity of the gain standard Ds, 
associated losses due to mismatch and material losses Ls = 1/Gn ≈ 1, and equivalent noise 
temperature due to theses losses when referred to the directivity terminals Ts ≈ 0, we perform a 
Y-factor measurement using the receiver to obtain the value Ys. 

 
( ) ( )1s c s mr s

HS
s

Y T T T L
T

D
− + +

=  (13-48) 

Both equations (13-47) and (13-48) contain the noise temperature of the receiver. We use the 
excess noise source to measure the noise temperature of the receiver system which often includes 
an amplifier located near the antenna and a long cable that delivers the signals to a spectrum 
analyzer. The excess noise source (diode) delivers a temperature T0 when off and T0 (ENR+1) 
across a wide frequency range when on. The bandwidth of the spectrum analyzer narrows the 
frequency bandwidth for measurement.  

 
( )0 1

1mr
r

ENRT T
Y

 
= − − 

 (13-49) 

We combine equations (13-47), (13-48), and (13-49) to compute the noise temperature of the 
feed network and antenna combination referred to the directivity point of the antenna. We obtain 
the G/T for the measurement in the chamber by the ratio of the product of gains divided by the 
noise temperature referred to the input to the measurement receiver. 

 / (1 )( )
1

a n a

HS a cc n n mr
c

G G GG T T G T YT T G T T
Y

= =
+ −+ + +
−

 (13-50) 

Equation (13-50) does not include the noise temperature of the measurement system, but gives 
G/T for the antenna attached to the measurement receiver. 
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Given the Y factor measured in the chamber with the associated THS and measurement receiver 
noise temperature Tmr, we compute G/T during operation from the antenna sky temperature Ta, 
and the operating receiver noise temperature Tr. 

 
( )

( )

1

1

sys

sys a c r mr
HS

a a n

G Y
T T T T TT Y

G G G

−
=

 − −+ − + 
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 (13-51) 

 
( )
( ) ( )/sys c n n mr

scanchamber
sys a n n r

G T T G T
G T G

T T T G T
+ +

=
+ +

 (13-52) 

Equation (13-52) shows the effects of the actual receiver and antenna temperature. Gscan is the 
gain reduction due to scanning the beam. If the network gain changes with scan, then the 
denominator term needs to be changed while the numerator term is the same as the measurement. 
 
[1] Peter Vizmuller, RF Design Guide, Systems, Circuits and Equations, Artech, 1995, pp. 192-
196. 
[2] Dean Paschen, Peter Moosbrugger, and Timothy Meenach, Active and Adaptive Antenna 
Testing, AMTA 
 
13-15 Error Measuring LHC Antenna with Cross Linear Source 

 
The vector response of the antenna under test is given by 

 
( ) ( ) ( )

( ) ( )

ˆ ˆ
2

ˆ ˆ1 1
2
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E a a a a a a

a a
 (1) 

The unit vector of the linear measurement antenna along x-axis is  
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+
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 (2) 

Whereas, the y-axis linear measurement antenna has been rotated 

 
2

ˆ

ˆ1

ρ

ρ

− +

+

Ly x y
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a a
 (3) 

The x-axis and y-axis responses are found by projecting Eqs. (2) and (3) on to Eq. (1) 
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+
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We convert the x-axis and y-axis responses to circular components by using Eq. (1-39) 
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Consider the relation between the linear and circular polarization ratios of a particular antenna separate from ratios 
given above for the source and AUT. We find the circular polarization ratio from the ratio of the right-hand and left-
hand responses. 
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 (8) 

When we rotate and antenna about an axis, the magnitude of ˆCρ remains constant whereas its phase changes. If we 
rotate the measurement antenna until its polarization ellipse is aligned with the x-axis, the tilt angle is zero and so is 
the phase of ˆCρ  since it is equal to twice the tilt angle. For a linear antenna that is predominately LHC, the 

magnitude of ˆCρ  is less than one and the phase of the linear polarization ratio is 90º. A linear antenna 
predominately RHC has a linear polarization phase of -90º.  

 * *ˆ ˆL L Lj jρ ρ ρ= ± = ±  

The upper sign is for a linear antenna predominately RHC and the polarization ratio without the caret is the 
magnitude. We substitute this into Eqs. (6) and (7). 
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If we use the same antenna for both measurements and rotate it to obtain the y-axis measurement, the magnitude of 
the linear polarization ratio is the same. This assumes that the chamber reflections do not change the linear 
polarization ratio significantly. 

 
( )

, 2 2

ˆ ˆ ˆ ˆ1 1 1 1 1
2 1 1

C C L C CL L
L Meas L

L L

EE E
ρ ρ ρ ρ ρ ρ

ρ ρ

 + + − − + +
 = =
 + + 





 (11) 

 
( )

, 2 2

ˆ ˆ ˆ ˆ1 (1 ) 1 (1 ) 1ˆ
2 1 1

C C L C CL L
R Meas L C

L L

EE E
ρ ρ ρ ρ ρ ρρ

ρ ρ

 + − − − − + ± = =
 + + 



 (12) 

 
Equations (11) and (12) give the measurement error due to the source cross-polarization where the upper sign is for 
a linear antenna predominately RHC and the lower sign for LHC. The error is independent of the axial ratio of the 
antenna being measured. These are the actual errors and not the range of error. 
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We combine Eqs. (11) and (12) to calculate the measurement error of axial ratio. 

 
( )
( )

1 1
Axial Ratio 

1 1
L C LL R

L R L C L

E E
E E

ρ ρ ρ
ρ ρ ρ

+ ±+
= =

− − ±




 (13) 

 
( )
( )

1 1 1Axial Ratio Error 
1 1 1

L C L C

L C L C

ρ ρ ρ ρ
ρ ρ ρ ρ

+ ± −
=

− ± +




 (14) 

 
 
 

 



Chapter 13 Antenna Measurements 

Modern Antenna Design, 3rd edition, by Thomas Milligan, © 2014 
 

 
We compute the maximum linear response from the sum of the RHC and LHC components [(Eq. (1-36)]. 

 ( )max 1 / 2L CE E ρ= +  

 
( )

max, 2

[1 1 ]
2 1

L C LL
Meas

L

EE
ρ ρ ρ

ρ

+ ±
=

+



 

The measurement error is the ratio including a rearrangement of the terms. 

 
( )

( )
max,

2
max

1 1

1 1
Meas C L C

C L

E
E

ρ ρ ρ

ρ ρ

+ −
=

+ +



 (15) 

In similar steps we calculate the minimum linear response. 

 ( )min 1 / 2L CE E ρ= −  

 
( )

min, 2

[1 1 ]
2 1

L C LL
Meas

L

EE
ρ ρ ρ

ρ

− ±
=

+



 

 
( )

( )
min,

2
min

1 1

1 1
Meas C L C

C L

E
E

ρ ρ ρ

ρ ρ

− +
=

− +



 (16) 
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i George L. Ragan, ed., Microwave Transmission Circuits, McGraw-Hill, 1948, p. 554 


