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4-26 Aperture Approximation of Directivity given Beamwidths 
 
By estimating the total integral of the radiated pattern, Kraus [see Section 1-8] devised a method 
of estimating directivity for pencil beam patterns with its peak at θ = 0°. Given the half-power 
beamwidths of the principal plane patterns, the integral is approximately the product of the 
beamwidths. This idea comes from circuit theory, where the integral of a time pulse is 
approximately the pulse width (3 dB points) times the pulse peak. 
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where 1θ  and 2θ  are the 3-dB beamwidths, in radians, of the principal plane patterns. 
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By rearranging Eq. (1-19) we obtain the (beamwidths) directivity product. 

 1 2 41,253Directivityθ θ =  
Kraus uses the beamwidth to estimate the power radiated.  In an aperture we use the fields in the 
aperture plane to determine radiated power.  It is a similar operation which can also lead to other 
estimations of directivity from beamwidths and a (beamwidths) directivity product. 
 
Consider a rectangular aperture. By using the approximation u = sin u for small angles in the 
uniform aperture distribution, the half-power beamwidth can be estimated (see Section 2.2 or 
Section 4.2) as  
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Note that we have ignored the (1 cos ) / 2θ+ pattern of the Huygens source, which reduces the 
beamwidth for radiation from small apertures. 

We can use the result above to estimate the directivity of a rectangular aperture from 
beamwidths. The direcitivity of a uniform distribution is  
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We solve for the aperture dimension divided by wavelength. 
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By substituting in the directivity formula and designating the beamwidths by θ1 and θ2 in the 
principal planes, we obtain a formula for directivity given beamwidths. 
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This equation is reduced to a nomograph. 

 

Figure 4-26-1 Directivity given E- and H-plane beamwidths 

Although it has been derived for an aperture with a uniform distribution, it can be used with 
other distributions for an approximation. This differs from the Kraus estimate found by 
considering all power to be within the 3-dB beamwidth, [Eq. (1-19)] by 1 dB. 

We can use amplitude taper efficiency of linear apertures to compute similar formulas.  Starting 
with the equation from Section 4.1 
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We obtain the (beamwidths) directivity product for a rectangular separable distribution from 
ATL and HPBW factor in the two planes. 
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When we use a Taylor one-parameter distribution for 30 dB sidelobes in both planes of a 
rectangular aperture, ATL = -0.96 dB (0.8017 ratio) and HPBW factor = 1.355 which gives a  

(beamwidths) directivity product = 4π (50.76*0.8017*1.355)2 = 38,206 

The beamwidth equation for a uniform circular distribution of diameter D (see Section 4.16) is 

 58.95D
HPBWλ

=  

The uniform circular aperture has the directivity. 
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When we gather terms, we compute directivity by using the beamwidths θ1 and θ2 in the 
principal planes. 
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This directivity differs by 0.25 dB from the one derived from a rectangular aperture. If we know 
the aperture distribution, we will use aperture efficiencies to determine directivity. 

If a circular aperture has a circularly symmetrical distribution, we use Eq. (4-8) to compute ATL. 
Using a tapered distribution increases the beamwidth by a multiple of the uniform distribution 
beamwidth called the HPBW factor.  

For a circular aperture we derive the (beamwidths) directivity product. 
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For example, a 30-dB Hansen circular distribution has a HPBW factor = 1.2252 and ATL = 1.19 
dB. 
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A 20-dB Hansen circular distribution has HPBWfactor = 1.0484 and ATL = 0.09 dB.  The 
(beamwidths) directivity product computes to the factor: 36,925.  This closer to the uniform 
circular distribution factor of 34,300 because more of the radiated power is contained in the 
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sidelobes which was not added to the integral of the total power.  Another example of this is the 
30-dB n = 8 circular Taylor distribution whose sidelobes fall off more slowly and the sidelobe 
region contains more power. This distribution has HPBWfactor = 1.1079 and ATL = 0.54 dB 
which computes to a (beamwidths) directivity product = 37,176 

Each aperture distribution produces a similar (beamwidths) directivity product with similar 
values in the range from 32,375 to 39,145 or a maximum variation of about 0.8 dB.  Considering 
measurement of gain has a accuracy error greater than 0.5 dB, measurement is unable to decide 
which factor should be used.  The EIA-411 standard uses 31,000 for a ground station which 
could account for the spillover loss of the feed antenna pattern [see Section 8-2]. 

 


